STATIC FREQUENCY CONVERTERS
THE FUTURE FOR RAILWAY TRACTION

Delaram Sharifi
Dr Pietro Tricoli
Dr Paul Weston
Many European governments are committed to investing in further electrifying their railway networks.

Industries, supported by university researchers, are looking into alternative electrification systems for new and existing railway lines around the world.

Static Frequency Converters (SFCs) have been recognised as the future as feeder-station for railway traction systems due to their numerous benefits.
WHY ELECTRIFICATION?

- Faster
- Greener
- Quieter
- More reliable
- Cheaper
- More comfortable
- Enhances Economy
- More seats
- Less wear on the track
- Less Maintenance
- Less wear on the track
- Less wear on the track
- Lighter
- Superior Performance
- Cheaper fuel
- Less Pollution
- Less vibration
- Cheaper fuel
CURRENT ELECTRIFICATION SYSTEM TRANSFORMERS

- **Static imbalance**
 - Special transformers to reduce imbalance
 - Connection to high voltage lines (135 kV) to limit the effects of imbalance
- **Low frequency harmonics**
- **Rated for peak power**
- **Require neutral sections**
- **Low power factor at light loads**

Diagram: Single-phase transformer feeder stations

- Neutral Section
- Single Phase Transformer
- Electric Locomotive
STATIC FREQUENCY CONVERTERS

BENEFITS

• Mesh feeding ⇒ Substations can be placed further apart, Renewable input possible
• No Imbalance ⇒ No connection to high voltage grid required
• Active voltage regulations, Power factor control ⇒ Lower Losses
• Controllable voltage magnitude and phase ⇒ Smart Control
• Lower rating Possible small or no filtering ⇒ Lower cost / weight / maintenance

Static converter feeder stations
CONVENTIONAL FEEDING SYSTEM VS SFC FEEDING SYSTEM

- Unpredictable power requirements
- Significant capacity margin requirements
- Installation costs
- Conversion Losses

Mesh feeding using SFCs

- Mesh feeding using SFCs
- Small capacity margin requirements
- Installation costs
- Conversion Losses
CURRENT SFC SYSTEMS

- In Germany, Switzerland, Sweden, Austria and Norway, where the railway network operates at 15 kV, 16 2/3 Hz, SFCs are well established and have replaced in many cases rotary converters.

- Single-phase networks are controlled with equal phase angles of the feeder-stations at all times in order to guarantee high dynamic of the electrification system.

- SFC based feeder-stations have found application also to 50 Hz railways in Queensland, Australia where the output voltages are also operated with the same phase angles.
CURRENT SFC CONTROL
(WITHOUT SMART CONTROL TECHNIQUES)

• Without any control of the voltage of the two feeding points, the train draws a percentage of power that is inversely proportional to the distance from each substation.

• Each substation must have the capacity to individually feed 100% of the train’s power requirement.

Not Optimal!
PROPOSED SOLUTION

A new smart control method in which the feeder stations provide an equal share of the trains network’s active power while limiting the reactive power regardless of the position of the train on the track.

• This method optimises the maximum load on the substations leading to:

 Already existing lines: Increase in train capacity on the line
 New build lines: Decrease in required substation capacity
CONTROLLING ACTIVE AND REACTIVE POWER BY PHASE ANGLE AND VOLTAGE MAGNITUDE

\[P_1 = \Re \{v_1 i^*\} \Rightarrow P_1 \propto \delta_{v2} - \delta_{v1} \]

\[Q_1 = \Im \{v_1 i^*\} \Rightarrow Q_1 \propto |v_1| - |v_2| \]
CALCULATING THE PHASE ANGLE AND MAGNITUDE OF VOLTAGE

\[v_1, \theta_1, P_{\text{Train}}, Q_{\text{Train}}, v_2, \theta_2 = ? \]
A PI (proportional–integral) control system is designed to control the value of each substation’s magnitude of voltage and second, third and fourth substation’s phase angle.

![Diagram of the moving train control system](image-url)
MATHEMATICAL MODEL

• MATLAB Script
• A Network of moving trains analysed in three comparable scenarios:
 • Auto-Transformer System
 • Static converter system – Synchronised
 • Static converter system – Equal share
• 160 km Journey
• The train is assumed to be a 6.1 MW Pendolino
• Time table of trains implemented with 5 stops.
• Acceleration, deceleration and regenerative power is taken into account.
AUTO-TRANSFORMER MODEL

Positive feed
Impedance per 100m
80 km
Negative feed
Cross-bond impedance
Neutral-section
Transformer internal impedance
Transformer feeder-stations
Rail
Neutral-section
Transformer feeder-stations
Transformer feeder-stations
Rail
Transformer feeder-stations
STATIC CONVERTERS MODEL

Distance between SFCs: 40 km

Positive feed

Cross-bond impedance

Impedance per 100m

20 km, end of line distance

SFC

Rail
SIMPLE COMPARISON BETWEEN THE SCENARIOS

- Powerloss and Efficiency

![Graph showing powerloss kW and efficiency vs distance km]
TIMETABLE OF TRAINS

- 14 trains on the line.
- 8 minutes gap between the trains, 3 minutes stop at the station
- Real data has been used to simulate the acceleration and deceleration time and power requirements
ACTIVE POWER GRAPHS

- AT System
- SFC-Synchronised
- SFC-Smart control
THE EFFECT OF DISTANCE BETWEEN SFCS ON MAXIMUM INSTANTANEOUS POWER AND ENERGY LOSS

- Energy lost in transmission
- Maximum instantaneous power

![Graphs showing max instantaneous power vs. distance between SFCS]
FEASIBILITY

- Internal Losses
- Transmission Losses
- Component prices
- Carbon Footprint
- Maintenance
- Size reduction effect
- No isolation sections

BENEFIT COST
FUTURE WORK

• A Comprehensive cost-benefit analysis for a full network of trains

• Although the equal share of power does not increase the transmission energy efficiency of the line, the arrangements in which the cost efficiency and energy efficiency are optimum should be investigated through further studies.

• Effects on the control system caused by the delay in the transmission of the feedback signals should be studied.
CONCLUSION

- SFCs represent the future for the electrification of railway lines
- Feeder stations will be provided with “intelligence” to optimise the operations of the train and the interface with the grid network
- Integration of renewable sources and storage is possible with power converters
- With power converters a new concept of “smart railways” will be introduced
ANY QUESTIONS?